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Abstract

Data intensive service functions such as memory
allocation/de-allocation, data prefetching, and data
relocation can pollute processor cache in conventional
systems since the same CPU (using the same cache)
executes both application code and system services. In
this paper we show the improvements in cache
performance that can result from the elimination of the
cache pollution using separate caches for memory
management functions. For the purpose of our study we
simulate the existence of separate hardware units for the
application and the memory management services using
two Unix processes. One process executes application
code (simulating main CPU) while the other executes
memory management code. We collected address traces
for the two processes and used Dinero IV cache simulator
to evaluate the expected cache behaviors. A second goal
of this paper is to examine the cache performance of
different memory allocators. In this paper we compare
two allocators: a very popular segregated list based
allocator (originally due to Doug Lea) and our own
binary-tree based allocator (called Address-ordered
Binary Tree).
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1. Introduction

The research presented in this paper is a by-product
of our ongoing work in overcoming the ever-increasing
speed gap between CPUs and memories. Besides
exploring multithreading [2, 7-9, 21], we have been
investigating the use of intelligent memories (i.e.,
IRAMs[13, 17, 18]) to tolerate the CPU — Memory speed
deference. In our research, we are investigating the use of
a small processor in memory like IRAMs, but we employ
the processor to aid the main CPU in executing memory
management operations. Data references made by
applications conflict with the data references made by
memory management operations and cause cache misses.
The cache misses that are not due to the locality behavior
of applications are the main source of cache pollution.
Use of a separate processor in DRAM for memory service
operations can reduce (or eliminates) such cache
pollutions..

In order to evaluate the effectiveness of our approach
before actually developing an intelligent RAM unit, in
this paper we investigate the cache misses caused by
memory management operation. Object-oriented and
linked-data structure applications invoke allocation/de-
allocation functions frequently. These memory
management functions are themselves very data intensive
in terms of managing available and live memory objects.
However, the data manipulations involve only addresses
(integer arithmetic). Therefore, a simple integer CPU
embedded inside a RAM offers a viable option for
migrating the allocation/de-allocation functions from the
main CPU to IRAM, and for improving application
performance by eliminating cache pollution. In this paper
we show that moving allocation/de-allocation functions
from the main CPU to IRAM eliminates, on average, 26%
of actual cache misses (as compared to the current
situation where allocation/de-allocation functions are
performed by the main CPU). A second result of this
paper is to compare the performance of different general-
purpose memory allocators in terms of their cache
behaviors. Here we compare two allocators — a very
popular allocator used by Unix systems (originated by
Doug Lea [14]) and our own allocator that uses binary
trees [10, 19].

2. Research Background

Although our overall goal is to develop a separate
processor inside a memory chip (i.e., IRAM like), in this
paper we are only investigating the amount of cache
pollution that can be eliminated by considering a separate
cache for memory management (regardless if the actual
memory management functions are delegated to an IRAM
processor or not). As such in this section we will provide
a brief introduction to memory management techniques.

2.1. Allocation Techniques

Dynamic memory management is an important
problem studied by researchers for the past several
decades. Every so-often the need for more efficient
implementation of memory allocation, both in terms of
memory usage and execution performance becomes acute
leading to newer techniques. The need for more efficient
memory management is currently being driven by the
popularity of object-oriented languages in general, and
Java in particular [1, 3].



An allocator’s task is to organize and track the free
chunks of memory as well as memory currently being
used by the running process (i.e., live objects). The two
primary aims of any efficient memory manager are high
storage utilization and fast execution performance [22].
Well-known placement policies such as best-fit and first-
fit have been utilized within most modern memory
allocators. However, current implementations have failed
to achieve both aims at the same time. For example,
sequential-fit algorithms show high storage utilization [6],
but poor execution performance [19]. On the other hand,
segregated free lists cause higher fragmentations, but their
performance is the best among allocators [22].

Currently used memory allocation schemes can be
classified into sequential fit algorithms, buddy systems,
segregated free lists, and binary tree algorithms.
Sequential fit approach (including first-fit and best-fit)
keeps track of available chunks of memory on a doubly
linked list. When a process releases memory, these
chunks are added to the free list, either at the head or in
place, if the list is sorted by addresses (Address Order
[22]); freed chunk may be coalesced with adjoining
chunks to form larger chunks of free memory. When an
allocation request arrives, the free list is searched until an
appropriate chunk is found. The memory is allocated
either by granting the entire chunk or by splitting the
chunk (if the chunk is larger than the requested size).
Best-fit methods [12] try to find the smallest chunk that is
at least as large as the request. First-fit [12] methods find
the first chunk that is at least as large as the request. Best-
fit method may involve delays in allocation while first-fit
method may lead to more external fragmentation [6].

In buddy systems [11, 12], the size of any memory
chunk (live, free or garbage) is 2* for some k. Two chunks
of the same size that are next to each other in terms of
their memory addresses are known as buddies. If a newly
freed chunk finds its buddy among the free chunks, the
two buddies can be combined into a larger chunk of size
2K During allocation, larger chunks are split into equal
sized buddies, until a small chunk that is at least as large
as the request is created. Large internal fragmentation is
the main disadvantage of this technique. It has been
shown that as much as 25% of memory is wasted due to
fragmentation in buddy systems [6]. An alternate
implementation, double buddy, which creates buddies of
equal size, but does not require the sizes to be 2%, is
shown to reduce the fragmentation by half [6, 23].

Segregated free list approaches maintain multiple
linked lists, one for each different sized chunks of
available memory. Returning a free chunk from one of the
lists satisfies allocation requests (by selecting a list
containing chunks, which are at least as large as the
request). Freeing memory, likewise, will simply add the
chunk to the appropriate list. Segregated free lists are
further classified as: simple segregated storage and
segregated fit [22]. No coalescing or splitting is
performed in simple segregated storage and the size of

chunks remains unaltered. If a request cannot be satisfied
from its associated sized list, additional memory from
operating system is requested via sbrk or mmap system
calls. Segregated fit allocator, instead, attempts to satisfy
the request from a list containing larger sized chunks — a
larger chunk is split into several smaller chunks. As can
be seen, simple segregated storage is faster than
segregated fit. However, the splitting and coalescing of
chunks employed by segregated fit algorithms may lead to
better storage utilization and result in fewer sbrk or
mmap system calls.

Cartesian tree is an allocation technique proposed
almost two decades ago [20]. In this method, free chunks
of memory are kept on a binary tree instead of a linearly
linked list. Cartesian tree uses both the starting address of
the chunks (i.e., Address Ordered Tree) and the size of the
chunks to construct the binary tree (it is called Cartesian
tree because it uses both size and address to form the
binary tree).

A Cartesian tree must satisfy the following
conditions.

a. address of descendents on left (if any) < address of
parent < address of descendents on right (if any)

b. size of descendents on left (if any) < size of parent >
size of descendents on right (if any)

The second condition requires the largest free chunk
to be at the root of the tree. In our research, we have
developed a variation to the Cartesian tree and we will
describe it in next subsection.

2.2. Binary Tree Memory Manager

The size condition of the Cartesian Tree allocator that
mandates the tree to have its largest node at the root of the
tree causes the tree to usually become unbalanced, and
possibly degrading into a linked list. In our approach to
the memory management, the free chunks of memory are
also maintained in binary tree similar to a Cartesian tree
[10, 19]. However, we remove the size condition
(condition b). In our implementation the tree is ordered by
addresses and each node of the tree contains the size of
the largest chunk of the memory available in its left and
right sub-tree. This information can improve the response
time for memory allocation requests. This information can
also be used for implementing better-fit policies, which
can improve memory utilization [6]. Since Address
Ordered Binary tree is ideally suited for coalescing of free
chunks, memory utilization is further enhanced.

3. Experimental Framework

To investigate the cache pollution caused by CPU-
resident memory management functions including
allocation/de-allocation; and to compare the cache
performance of different allocators, we have conducted
our experiments on Dec Alpha 21164 processors, running
Digital Unix. First we have used a single process
(simulating conventional systems using a single CPU) to



run both the application code and memory allocator code.
The benchmarks are instrumented using ATOM [5] to
collect load and store traces. In the next step, we have
used two separate processes -- one process executes the
application code while the other executes allocator code
(simulating the use of a separate processor for memory
management, which can potentially be embedded in a
DRAM chip). We have used ATOM to instrument
allocator and application processes to collect the
load/store traces separately for each process. We have
then used Dinero IV cache simulator [4] to evaluate the
cache memory performance in the two cases of our
experiment.

For our studies we have used 4 benchmarks that are
popular for evaluating memory allocation techniques.
These benchmarks are all written in C and briefly
explained in Table 1.

Benchmarks | Description Inputs

boxed-sim balls in box | nl0-sl
simulator

Cfrac it factors numbers. a 36-digit number

Ptc Pascal to C converter | mfip

espresso PLA optimizer largest.espresso

Table 1. Benchmark descriptions and their inputs

In our experiments we have used two general-
purpose allocators.

Doug Lea’s allocator — perhaps the most widely used
allocator. We used version 2.7.0 of this allocator, which
benefited from several years of optimizations. It is an
efficient hybrid allocator with respect to the size of
objects [14]. For sizes less than 512 bytes it uses simple
segregated storage technique. The different sizes differ in
increments of 8 bytes. For sizes greater than 512 bytes
and less than 128 Kbytes it uses segregated fit allocator.
And it keeps the rests in a sequential free list (this
algorithm is labeled as lea in our figures).

ABT: Address-ordered Binary Tree, which is
described in the previous section (this algorithm is
labeled as abt in our figures).

4. Empirical Results

We have collected traces for two scenarios:
Con-Conf: Conventional Configuration, in which case
both application and its allocator are running on the
main CPU (in our experiment this is simulated using a
single process for running both the application code and
allocator code).

IMM: Intelligent Memory—Manager, where a separate
process executes memory management functions. This
situation is simulated in our experiment utilizing two
separate processes.

As mentioned in section 3, we have emulated the use
of a separate processor embedded in a DRAM chip for
memory allocation functions using two separate (Unix)

processes. The processes have used shared segments to
communicate memory allocation and de-allocation
requests (and responses). This inter-process
communication and synchronization has added overhead
in terms of accesses to shared segments. Each time the
allocator process runs out of memory it issues an mmap
system call (with shared flag) to acquire more memory
form operating system. It then sends the mapped address
and its size to application process. Application process
finally calls mmap to map the same address to its address
space, further adding to memory references. The number
of mmap system calls is a function of allocator behavior.
An allocator with better memory utilization requires
fewer mmap calls.

4.1. Comparison of Cache Localities

The major contribution of this paper is to affirm that
removing the dynamic memory allocator can lead to
improved processor cache performance (and eliminate
processor cache pollution by the allocator functions). For
the data shown in this section we have used Dinero IV
cache simulator. Figure 1 depicts the actual number of
cache misses using 8 Kbytes cache with 32-byte blocks
and Figure 2 shows the miss rates.
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Figure 1. total number of cache (8 Kbytes direct map
cache and 32 bytes line size)

Figure 1 shows that on average about 26% of all
cache misses are eliminated. Some computationally
intensive applications such as cfrac show less drastic
reduction in cache misses, while applications that are
intensive in terms of allocation/de-allocation requests like
boxed-sim show significant reduction in cache misses
(since the allocator code is removed from the application
code). As stated previously, our experiment has added
overhead to the total number of memory references
caused by the application since our experiment used
shared memory segment for simulating communication
between the allocator and the application. When a real
hardware implementation is used (removing the overhead



memory accesses), we claim that the number of cache
misses caused by an application will show even more
dramatic reductions.

Figure 2 depicts the cache miss rates for
applications using a single process (Con-Conf) and two
processes (IMM). The figure shows that the IMM
configuration reports dramatically reduced cache miss
rates for all applications using either allocator technique.
On average the data shows a reduction of 70% in cache
miss-rates across all applications. Once again, our
experimental artifact causes some of the cache misses.
When these misses are eliminated (using hardware for
allocator), we feel that the cache miss rates can show even
greater reductions.
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Figure 2. Cache miss rate (8 Kbytes direct map cache
and 32 Bytes line size)

As can be seen from Figure 2, ABT allocator behaves
better than Doug Lea’s allocator. The amount of cache
pollution caused by an allocator depends on how data
intensive the allocator is. The headers used with memory
objects for the purpose of maintaining free chunks by the
allocator are the main causes of cache pollution. Thus the
cache pollution is related to the header size used by a
specific allocator. Our allocator ABT uses more header
information than other allocators, causing greater cache
pollution. ABT can potentially traverse several levels of
the binary tree to find an appropriate chunk of memory
for allocation. This in turn can lead to more cache
accesses by the allocator, hence greater cache pollution.
Doug Lea’s allocator is highly optimized and efficient —
hence it causes less pollution than other allocators.
However when we utilize a separate processor for
memory management, the memory accesses of the
allocator are separated from the processor cache —
obviating the advantages of Doug Lea’s allocator (at least
in terms of cache behavior).

4.2. Impact of Cache Parameters.

Figure 3 and 4 are used to show the impact of cache
line size and cache capacity. As usual, increasing cache
line (or block) size increases locality and thus reduces
miss rate. This improvement is uniform across all
benchmarks and allocators. But the figure shows more
dramatic improvements for IMM when using a separate
hardware allocator and a separate cache.

The effect of keeping the line size at 32 Bytes and
increasing the cache size is shown in Figure 4. Since ABT
is more data intensive (and use more header information),
increased cache size is less beneficial for these allocators
than increased line size.
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Figure 3. Cache Miss Rate (8 Kbytes direct map
cache with 64 Bytes line size)

0.08
0.06 m Con-Conf

espresso average

Figure 4. Cache Miss Rate (16 Kbytes direct map
cache with 32 Bytes line size)

4.3. Comparing Cache Behaviors of Allocators.

We now directly compare the cache behaviors of the
allocators. This is achieved by collecting address traces
for the (separate) allocator process for the two allocators
in our experimental framework. Figure 5 shows the cache
performance for the two allocators chosen for this paper.
Even with a very small cache in Intelligent Memory (1



Kbytes, for use only by the memory management
functions), very few misses are reported for either
allocator. Allocator’s task is to keep track of free chunks
of memory in a list. Either allocation or free involves only
address or size modifications. If an allocator reuses
recently freed objects, the cache performance of the
allocator is improved since the headers of the recently
freed objects may still be in the allocator cache. This is
the case with simple segregated storage allocators (such
as Doug Lea’s allocator). Using coalescing of freed
objects can also lead to better localities since we will be
using recently freed objects to satisfy requests (indirect
effect). This is the case with ABT.

The data shown in Figure 5. includes overhead
memory references because of our experimental
framework (caused by inter-process communication
between the application and allocator processes via shared
segments). As noted before when these overhead
references are removed using separate hardware
processors for allocator and main CPU (and use memory
bus for communication), we feel that the allocator cache
need only be very small (say a few kilo bytes) to achieve
very few cache misses (and low miss rates).
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Figure 5. IMM-allocator cache misses (1 Kbyte
Direct map cache with 32bytes line size)

5. Conclusions

As the performance gap between processors and
memory units continues to grow, memory accesses
continue to inhibit high performance on modern
processors. While memory hierarchies utilizing cache
memories can alleviate the performance gap somewhat,
cache performance is often adversely affected by service
functions such as dynamic memory management. Modern
applications rely heavily on linked lists and object-
oriented programming and this requires sophisticated
dynamic memory management services, including

allocation, de-allocation, garbage collection, data
prefetching and object relocatio. Using a single CPU
(with its cache) for executing both service related
functions and application code often leads to poor cache
performance. Sophisticated service functions need to
traverse user data objects—and this requires the objects to
reside in cache even when the application is not accessing
them.

Our research is motivated by these observations. We
feel that, with a simple integer processor and a small
cache included on DRAM chips (similar to IRAM
devices), we can offload memory management functions
from main CPU, thus eliminating the pollution of
processor caches. In this paper we have demonstrated this
contention by utilizing a simulated environment. We have
investigated the use of different memory allocators and
their cache behaviors. Our research shows that on the
average the use of a separate processor and separate cache
for memory allocation and de-allocation functions can
eliminate 26% of actual reference misses and lead to 70%
reduction in miss rates. Our experimental framework
caused some additional memory references by both the
application and the allocator, since inter-process
communication between the allocator process and
application process has used shared memory segments.
We feel that even more dramatic cache performance
improvements will result when real hardware is used for
the two processors.

We also have explored the amounts of cache
pollution caused by different memory allocation
techniques. Some techniques have resulted in more
pollution, but these allocators have shown other benefits
in terms of allocation speed or memory utilization. Since
the use of a separate hardware processor can eliminate the
cache pollution caused by an allocator, we can benefit
from the advantages of more sophisticated memory
managers. Other dynamic service functions such as Jump
Pointers to prefetch linked data structures and relocation
of closely related objects to improve localities can also
cause cache pollution if a single CPU is used — such
service functions drag the objects through the processor
cache. Again these functions can be safely offloaded to
the Intelligent Memory Unit in order to benefit from their
performance advantages without suffering from degraded
cache performance. We will extend our experiments to
investigate the increase in cache performance for these
management functions.
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